H9PAI: Programming for Artificial Intelligence

Module Code:		H9PAI					
Long Title		Programming for Artificial Intelligence SUPERSEDED					
Title		Programming for AI					
Module Level:		LEVEL 9					
EQF Level:							
EHEA Level:		econd Cycle					
Credits:		10					
Module Coordinator:		rghir Moldovan					
Module Author:		Arghir Moldovan					
Departments:		School of Computing					
Specifications of the qualifications and experience required of staff		MSc and/or PhD degree in computer science or cognate discipline. Experience lecturing in the field. May have industry experience also					
Learning Outcomes							
On successful completion of this module the learner will be able to:							
#	Learning Outcome	escription					
LO1	Analyse, compare, c implementation.	e, contrast and critically evaluate the characteristics of programming languages and environments commonly utilised for Al solutions					
LO2	Critically assess the	the challenges associated with implementing Al solutions for various problems.					
LO3	Critically assess met	nethods and practices for software development in order to design and implement AI solutions requirements.					
LO4	Evaluate, design and	implement Al solutions by using key algorithms, data structures, and relevant programming languages.					
Dependencies							
Module Recommendations							
No recommendations listed							
Co-requisite Modules							
No Co-requisite modules listed							
Entry requirements		Internal to the programme					

H9PAI: Programming for Artificial Intelligence

Module Content & Assessment

Indicative Content

Introduction to Programming for Al

Module Introduction, History and evolution of programming languages used for Al; Programming types and paradigms (imperative, declarative, functional, logic, agent oriented programming, probabilistic programming, etc.); Overview of programming languages used for implementing Al solutions: general-purpose languages (e.g., Python), classical Al languages (e.g., Lisp), new generic Al programming languages (e.g., MIT Gen), deep probabilistic programming languages (e.g., Edward, Pyro).

Al Computation Challenges

Challenges associated with big data requirements of statistical AI (e.g., deep learning); Computation challenges (e.g., search space, time and space complexity); Parallelism for computational processes; Use of specialised/dedicated hardware to speed up computations (e.g., GPUs, Google TPUs, wafer-scale AI chips such as Cerebras CS-1, etc.); Distributed computing platforms; Brief overview AI services and APIs offered by public cloud providers (e.g., Amazon AWS, Microsoft Azure, Google Cloud Platform).

Overview of the programming language

Syntax and semantics, expressions and statements; Basic data types, conversion and coercion; Built in data structures (arrays, matrices, lists, etc.), indexing data structures; Program flow control and iteration.

Input/Output and Functions

Input/output data from structured/semi-structured file formats (csv, xml, json); Input data from the Internet (e.g., web scraping, web APIs); Defining functions; Lambdas for functional programming; Algorithm design.

Data Operations and Data Streaming

Dealing with missing values; Catching exceptions; Use of support libraries (e.g., Pandas, Numpy, dfply); Stream input sources, live data stream, window-based transformations, combination of batch and stream computations.

Database Programming - Relational Databases

Database system technologies; Programmatically connecting to databases; Create/Read/Update/Delete (CRUD) Operations; SQL Optimization, Indexing and Normalization.

Database Programming - NoSQL Databases, Data Lakes

NoSQL Overview and Data Models: Document Model, Key-Value Model, Column Family, Aggregates, Graph Model, Triple Stores; NoSQL Data Modelling Concepts; Query Languages for Data in NoSQL; NoSQL systems.

ETL, Data Pipelines and Data Wrangling

Data wrangling techniques; Developing programs for data processing activities (e.g., data extraction, cleaning, merging, aggregation, validation, analysis, reporting).

Ontology Engineering

Ontology definitions: domain ontology, concepts, instances and relationships; Overview of technologies for ontology engineering: Web Languages (e.g., HTML, XML and RDF), Metadata standards(e.g., Dublin Core), Ontology Language (e.g., OWL), Ontology Editor (e.g., Protégé), Reasoning language (e.g., SPARQL).

Deep Learning

A brief introduction to deep learning concepts; Overview of deep learning frameworks (e.g., PyTorch, TensorFlow, Apache MXNet, Keras); Overview of public cloud Al services for deep learning (e.g., AWS Deep Learning AMIs, Google Cloud TPUs); Use of pre-trained models and cloud services for various example applications (e.g., regression, classification).

Natural Language Processing

Overview of NLP libraries and frameworks (e.g., NLTK); Overview of public cloud AI services for NLP, translation (e.g., Amazon Lex, Polly, etc.); Use of pre-trained Generalized Language Models for NLP applications (e.g., Google BERT, OpenAI GPT-2, etc.).

Image Processing

Overview of image processing libraries and frameworks (e.g., OpenCV); Overview of public cloud AI services for image and video recognition (e.g., Azure Face, AWS Rekognition, etc.); Use of pre-trained models for example applications (e.g., RetinaNET object detection).

Assessment Breakdown	%
Coursework	100.00%

Assessments

Full Time

Assessment Type: Formative Assessment % of total: Non-Marked

Assessment Date: n/a Outcome addressed: 1,2,3,4

Non-Marked: Yes

Assessment Description

Formative assessment will be provided on the in-class individual or group activities. Feedback will be provided in written or oral format, or on-line through Moodle. In addition, in class discussions will be undertaken as part of the practical approach to learning.

 Assessment Type:
 Continuous Assessment
 % of total:
 30

 Assessment Date:
 n/a
 Outcome addressed:
 3,4

Non-Marked: No

Assessment Description:

This assessment will consist of practical tasks in the form of an in-class test. This will assess learners' knowledge and competences on programmatically processing and analysing datasets including operations with database connectivity.

Assessment Type:Project% of total:70Assessment Date:n/aOutcome addressed:1,2,3,4

Non-Marked: No

Assessment Description:

The terminal assessment will consist of a project that will evaluate all learning outcomes. Learners will have to develop a software application of their own choice utilising appropriate AI programming languages, algorithms, techniques, tools / frameworks / services. The final submission will consist of an academic research paper style report as well as the implemented AI solution artefact.

No End of Module Assessment

No Workplace Assessment

Reassessment Requirement

Coursework Only

This module is reassessed solely on the basis of re-submitted coursework. There is no repeat written examination

Reassessment Description

The reassessment strategy for this module will consist of a project that will assess all learning outcomes. Students who fail the module will be afforded an opportunity to do the repeat project over the Summer months.

H9PAI: Programming for Artificial Intelligence

Module Workload Module Target Workload Hours 0 Hours Workload: Full Time												
								Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload
								Lecture	Classroom & Demonstrations (hours)		Per Semester	2.00
Tutorial	Other hours (Practical/Tutorial)		Per Semester	2.00								
Independent Learning	Independent learning (hours)	202	Per Semester	16.83								
Total Weekly Contact Hours												

Module Resources

Recommended Book Resources

Artasanchez, A. & Joshi, P. (2020). Artificial Intelligence with Python(2nd ed.). Packt Publishing. [ISBN: 978-1839219535]..

Rothman, D., Lamons, M., Kumar, R., Nagaraja, A., Amir Ziai, & Dixit, A. (2018). Python: Beginner's Guide to Artificial Intelligence. Packt Publishing. [ISBN: 978-1789957327]..

Supplementary Book Resources

McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython(2nd ed.). O'Reilly Media. [ISBN: 978-1491957660]..

Jean-Baptiste, L. (2020) Ontologies with Python: Programming OWL 2.0 Ontologies with Python and Owlready2. Apress. [ISBN: 978-1484265529]..

Bonaccorso, G., Fandango, A., & Shanmugamani, R. (2018). Python: Advanced Guide to Artificial Intelligence. Packt Publishing. [ISBN: 978-1789957211]..

This module does not have any article/paper resources

Other Resources

[Website], DataCamp, Learn R, Python & Data Science Online,, https://www.datacamp.com/

Discussion Note: