H9CLAR: Cloud Architectures

Module Code:		CLAR						
Long Title		Cloud Architectures APPROVED						
Title		Cloud Architectures						
Module Level:		LEVEL 9						
EQF Level:		7						
EHEA Level:		Second Cycle						
Credits:								
Module Coordinator:		cio Gonzalez-Velez						
Module Author:		acio Gonzalez-Velez						
Departments:		School of Computing						
Specifications of the qualifications and experience required of staff		PhD degree in computer science or cognate discipline. Experience lecturing in the field. May have industry experience also.						
Learning Outo	omes							
On successful	completion of this modu	le the learner will be able to:						
#	Learning Outcome	Description						
LO1	Critically compare ar enabling technologie	d contrast distinct parallel and distributed architectures in terms of their functional and non-functional characteristics and associated						
LO2	Demonstrate in-dept	n knowledge of different types of computing systems for data storing, staging, and processing.						
LO3	Evaluate and assess	s virtualisation and software environments for cloud computing.						
LO4	Construct and prese	nt a business case for a complex, dynamic high performance computing solution for clouds.						
LO5	Apply data governan	nce and ethical frameworks to complex computational problems and recommend cloud-based solutions.						
Dependencies								
Module Recor	nmendations							
No recommendations listed								
Co-requisite Modules								
No Co-requisite modules listed								
Entry requirements		Internal to the programme						

H9CLAR: Cloud Architectures

Module Content & Assessment

Indicative Content

Quantitative Design and Analysis

Computer Architecture review. Classes of Computers. Trends in Technology, Power, and Cost. Dependability

Measuring, Reporting, and Summarising Performance. Performance, Price and Power. Amdahl's Law. Fallacies and Pitfalls

Memory Hierarchy

Levels of memory hierarchy. Cache: associativity and optimisations. Main memory. SRAM, DRAM, and SDRAM

Memory Systems
Virtual Memory and Virtual Machines. Virtual Machine monitors. Cache coherency. Containers.

Parallel Computing Architectures
Flynn's Taxonomy; SIMD vs. MIMD. GPUs, TPUs, FPGAs, Neuromorphic computing. Vector and Loop-Level Parallelism

Warehouse-scale Computing

Programming Models and benchmarks. Workloads. Computer architecture of warehouse-scale computers.

Cloud Datacentres

Physical infrastructure, location, and power considerations for data centres.

Cloud Delivery Models

NIST Model. DGI Data Governance Framework. Concepts for delivering infrastructure, platform, and software as a service.

Non-functional characteristics of cloud systems

SLAs/QoS, MTTR/MTTF, Availability, Mobility, and Optimisation for Cloud

Cloud Infrastructures and Services

Computation, storage and general resource deployment; Private and public cloud services (e.g. OpenStack, AWS and GAE service offerings).

Data-intensive storage managementGraph parallel and Microservices. CAP Theorem; distributed file organisations, application staging.

Total cost of ownership. Influence of server cost and power. CAPEX vs. OPEX. ACM Code of Ethics.

Assessment Breakdown	%	
Coursework	50.00%	

Assessments

Full Time

Coursework

Assessment Type Project Week 10 **Assessment Date:**

% of total: 50 Outcome addressed: 3.4.5

Non-Marked:

Assessment Description:

Develop a complex business case for a cloud computing solution with specific emphasis on technical, ethical, and data governance constraints.

End of Module Assessment

Assessment Type Terminal Exam Assessment Date: End-of-Semester % of total: 50 Outcome addressed: 1,2

Non-Marked: No

Assessment Description:

The test will assess learners' knowledge and understanding of computing architectures, programming models, and storage concepts.

No Workplace Assessment

Reassessment Requirement

Repeat examination

Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

Reassessment Description

Reassessment of this module will be via proctored examination or a project examining all learning outcomes

H9CLAR: Cloud Architectures

Module Workload									
Module Target Workload Hours 0 Hours									
Workload: Full Time									
Workload Type	Workload Description		Hours	Frequency	Average Weekly Learner Workload				
Practical	No Description		24	Per Semester	2.00				
Lecture	No Description		36	Per Semester	3.00				
Independent Learning Time	No Description		190	Per Semester	15.83				
Total Weekly Contact Hours									

Module Resources

Recommended Book Resources

lan Foster, Dennis B. Gannon. (2017), Cloud Computing for Science and Engineering, MIT Press, Cambridge, p.392, [ISBN: 978-0-262-03724-2].

J. Hennessy, D. Patterson. (2017), Computer Architecture: A Quantitative Approach, 6. Morgan Kaufmann, Amsterdam, [ISBN: 978-0128119051].

Supplementary Book Resources

Dan C. Marinescu. (2017), Cloud Computing, Morgan Kaufmann, Amsterdam, p.586, [ISBN: 0128128100].

Kai Hwang. (2017), Cloud Computing for Machine Learning and Cognitive Applications, MIT Press, Cambridge, p.624, [ISBN: 026203641X].

Maurice Herlihy, Nir Shavit. (2012), The Art of Multiprocessor Programming, Elsevier, Amsterdam, p.508, [ISBN: 0123973376].

William Gropp, Ewing Lusk, Anthony Skjellum. (2014), Using MPI, MIT Press, Cambridge, p.336, [ISBN: 0262527391].

Irv Englander. (2014), The Architecture of Computer Hardware, Systems Software, and Networking, 5. Wiley, New York, p.696, [ISBN: 1118322630].

Joanna Kołodziej, Horacio González-Vélez. (2019), High-Performance Modelling and Simulation for Big Data Applications, Springer, Cham, p.352, [ISBN: 978-3-030-16271-9].

Recommended Article/Paper Resources

R. Buyya et al.. (2019), A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade, ACM Computing Surveys, 51, p.105:1, https://doi.org/10.1145/3241737

Supplementary Article/Paper Resources

H. González-Vélez, M. Leyton. (2010), A survey of algorithmic skeleton frameworks: high-level structured parallel programming enablers, Software: Practice and Experience, 40, p.1135-, https://doi.org/10.1002/spe.1026

N. P. Jouppi et al.. (2017), In-Datacenter Performance Analysis of a Tensor Processing Unit, SIGARCH Comput. Archit. News, 45, p.12, https://doi.org/10.1145/3140659.3080246

Other Resources

Discussion Note: