H9AIDM: AI Driven Decision Making

Module Code:		H9AIDM				
Long Title		AI Driven Decision Making APPROVED				
Title		Al Driven Decision Making				
Module Level:		LEVEL 9				
EQF Level:		7				
EHEA Level:		Second Cycle				
Credits:		5				
Module Coordinator:		Ade Fajemisin				
Module Author:		Margarete Silva				
Departments:		chool of Computing				
Specifications of the qualifications and experience required of staff		MSc and/or PhD degree in computer science, mathematics or cognate discipline. May have industry experience also.				
Learning Outco	omes					
On successful co	ompletion of this modu	ile the learner will be able to:				
#	Learning Outcome	Description				
L01	Critically assess the	pries and models of decision making to contextualise artificial intelligence driven approaches for decision making.				
LO2	Model and solve a va	ariety of real-world problems as constraint satisfaction and optimisation problems.				
LO3		appropriate artificial intelligence driven decision-making approaches (e.g., Bayesian Networks, Fuzzy Systems, Evolutionary Systems) to oss various application domains.				
LO4	Implement, compare with sample optimisa	e, contrast, and critically evaluate alternative artificial intelligence algorithmic approaches to determine their suitability for decision making ation problems.				
Dependencies						
Module Recom	mendations					
No recommendations listed						
Co-requisite Modules						
No Co-requisite modules listed						
Entry requirements		Learners are required to hold a minimum of a level 8 honours qualification, or equivalent on the National Qualifications Framework, and must be from a cognate background.				

H9AIDM: AI Driven Decision Making

Module Content & Assessment

Indicative	Content

Module Introduction Theory & Models of Decision Making (e.g., Simon / Boyd) Structured, semi-structured, unstructured decision making Decision Support Systems Intelligent Decision Support Systems Al/Human Decision Making context (Support, Augment, Replace, Automate) Explainable Al Expert Systems, Case-based & Rule-based systems / Historical Perspective Al approaches to decision making covered in the module Ethical questions and implications Introduction to Optimization Components of an optimisation problem Maximization and Minimization problems Graph optimization Application to real-world problems such as cutting stock problems, vehicle routing problems, scheduling problems, etc. Linear and Integer Programming Basic properties of Linear Programming problems Linear Programming formulation Mixed Integer Programming Algorithms for solving optimisation problems: Branch-and-Bound, Branch-and-Price **Constraint Programming** Modelling problems using constraint programming Constraint propagation using arc-consistency, node-consistency and path consistency Backtracking search algorithms Local search methods Applications of constraint programming **Bayesian Networks** Random variables Bayes's Theorem and Conditional Probability Bayesian Networks Real-world applications of Bayesian Networks, e.g. image processing, information retrieval, troubleshooting, etc. Fuzzy Systems Fuzzy Sets Fuzzy Logic Membership Functions Fuzzy Reasoning Fuzzy Decision Making **Evolutionary Systems** Genetic Algorithms Operators in Genetic Algorithms Stopping Conditions and Constraints Classification of GAs **Evolutionary Systems** Swarm Intelligence Memetic Algorithms Metabeuristics Fitness landscapes Local search Simulated annealing Metaheuristics Tabu Search Variable neighbourhood search Hybrid Systems Combining metaheuristics with mathematical programming, constraint programming, machine learning and data mining

Applications

Survey and analysis of AI decision making across a number of application domains

Assessment Breakdown

Coursework Assessments

Full Time Coursework Assessment Type: Formative Assessment % of total: Non-Marked Assessment Date: n/a Outcome addressed: 1,2,3,4 Non-Marked: Yes Assessment Description: Formative assessment will be provided on the in-class individual or group activities. Feedback will be provided in written or oral format, or on-line through Moodle. In addition, in class discussions will be undertaken as part of the practical approach to learning. Assessment Type: Continuous Assessment % of total: 40 Assessment Date: Outcome addressed: 2 n/a Non-Marked: No Assessment Description: The learner will be required to model and solve a series of problems using integer programming 60 Assessment Type: Project % of total: Assessment Date: n/a Outcome addressed: 1,2,3,4 Non-Marked: No Assessment Description: Long-form project which the student produces over the course of the entire semester. Student is required to research and utilise a suite of AI based algorithms and approaches to provide decision making capabilities in a chosen application problem domain. The results of applying these techniques should then be critically evaluated. It is required to submit a project report including: (a) the background research that has been conducted, (b) the methodology applied to complete the project, (c) implementation details, (d) experimentation details, (e) evaluation of results, and (f) conclusion. No End of Module Assessment No Workplace Assessment

%

100.00%

•

Reassessment Requirement

Coursework Only

This module is reassessed solely on the basis of re-submitted coursework. There is no repeat written examination.

H9AIDM: AI Driven Decision Making

Module Workload							
Module Target Workload Hours 0 Hours							
Workload: Full Time							
Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload			
Lecture	In-class lectures	24	Per Semester	2.00			
Lab	Application of concepts presented in lectures	24	Per Semester	2.00			
Independent Learning	Independent learning	77	Per Semester	6.42			
Total Weekly Contact Hours							

Module Resources						
Recommended Book Resources						
Frederick S. Hillier, Gerald J. Lieberman. Introduction to Operations Research, [ISBN: 9781259253188].						
William Kocay, Donald L. Kreher.	William Kocay, Donald L. Kreher. (2016), Graphs, Algorithms, and Optimization, Second Edition, CRC Press, p.546, [ISBN: 9781482251166].					
Francesca Rossi,Peter Van Beek,	Francesca Rossi, Peter Van Beek, Toby Walsh. (2006), Handbook of Constraint Programming, Elsevier Science Limited, p.955, [ISBN: 9780444527264].					
Norman Fenton,Martin Neil. (2012	Norman Fenton, Martin Neil. (2012), Risk Assessment and Decision Analysis with Bayesian Networks, CRC Press, p.524, [ISBN: 9781439809112].					
Supplementary Book Resources	Supplementary Book Resources					
El-Ghazali Talbi. (2009), Metaheur	El-Ghazali Talbi. (2009), Metaheuristics: From Design to Implementation.					
Kartik Hosanagar. (2019), A Huma	Kartik Hosanagar. (2019), A Human's Guide to Machine Intelligence, Penguin, p.272, [ISBN: 9780525560890].					
Supplementary Article/Paper Resources						
Çağrı Koça,Tolga Bektaşa,Ola Jabalib,Gilbert Laporte. (2016), Thirty years of heterogeneous vehicle routing, European Journal of Operational Research, 249, https://doi.org/10.1016/j.ejor.2015.07.0 20						
Pablo Martínez Fernándeza, Ignacio Villalba Sanchísa, Víctor Yepesb,Ricardo Insa Franco. Assessment and optimization of sustainable forest wood supply chains – A systematic literature review, Journal of Cleaner Production, 222, https://doi.org/10.1016/j.jclepro.2019.0 3.037						
Billie Anderson. (2019), Using Bayesian networks to perform reject inference, Expert Systems with Applications, 137, https://doi.org/10.1016/j.eswa.2019.07.0 11						
This module does not have any other resources						
Discussion Note:						