H8NNPA: Neural Networks & Prescriptive Analytics

Module Code:		H8NNPA				
Long Title		Neural Networks & Prescriptive Analytics APPROVED				
Title		Neural Networks & Prescriptive Analytics				
Module Level:		LEVEL 8				
EQF Level:		6				
EHEA Level:		First Cycle				
Credits:		10				
Module Coordinator:		Isabel O'Connor				
Module Author:		Isabel O'Connor				
Departments:		School of Computing				
Specifications of the qualifications and experience required of staff		Master's degree or PhD in a computing or cognate discipline. May have industry experience also.				
Learning Outcomes						
On successful co	empletion of this modu	ile the learner will be able to:				
#	Learning Outcome	Description				
LO1	Describe a range of	different neural network models and identify specific applications				
LO2	Identify architectures	ctures and optimization methods for deep neural network training				
LO3	Implement deep lear	ent deep learning methods and apply them to data using state of the art deep learning tools				
LO4	Explain and evaluate	xplain and evaluate the basic underlying principles of heuristic search as optimization methods to solve complex problems				
LO5	Comprehend and apply the methodologies of the most commonly used heuristics (Greedy, Simulated Annealing, Tabu Search, Evolutionary algorithms, Ant Colony optimization)					
LO6	Develop new (hybrid	evelop new (hybrid) heuristic methods by extending and combining existing heuristic search strategies				
LO7	Apply heuristics algo	ply heuristics algorithms to solve complex problems in real-world engineering and business scenarios using the state of the art software tools				
Dependencies						
Module Recommendations						
No recommendations listed						
Co-requisite Modules						
No Co-requisite modules listed						
Entry requirements		Learners should have attained the knowledge, skills and competence gained from stage 3 of the BSc (Hons) in Data Science				

H8NNPA: Neural Networks & Prescriptive Analytics

Module Content & Assessment				
Indicative Content	Indicative Content			
Neural Network Representations and For - From Linear to Non-Linear Classifiers I	Neural Network Representations and Forward Propagation - From Linear to Non-Linear Classifiers Units, Layers, Bias Units Building non-linear functions The Feed Forward Algorithm			
Backpropagation - Overview of Backpropagation Methods	Backpropagation - Overview of Backpropagation Methods Deriving the Backpropagation Equations The Backpropagation Algorithm Visualizing Backpropogation in TensorFlow			
Refining Backpropagation - Cross Entropy Loss function Hyperboli	c Tangent Units Rectified Linear l	Jnits Softmax Layers		
Preventing Overfitting - Regularization in Neural Networks Earl	ly Stopping Dropout			
Convolutional Neural Networks - Convolutions Pooling Layers Implem	enting a CNN Scaling networks w	vith a GPU		
Recurrent Neural Networks - Basic topology Motivating examples Long Short Term Memory				
Common concepts for evolutionary methods - Representation Objective function Constraint handling Performance analysis				
Single-solution based metaheuristics - Fitness landscapes Local search Sin	- Fitness landscapes Local search Simulated annealing Tabu search Variable neighbourhood search			
Evolutionary algorithms - Genetic algorithms Swarm intelligence	Evolutionary algorithms - Genetic algorithms Swarm intelligence Memetic algorithms swarm intelligence			
Hybrid metaheuristics Combining metaheuristics with mathematical programming, constraint programming, machine learning and data mining				
Applications I Analytical customer relationship managem	ient, Clinical decision support system	ms, Direct marketing, Fraud detection. Ethics	s implication:	5
Applications II Project risk management, oil and natural gas exploration, logistics and transportation. Ethics implications				
Assessment Breakdown %			%	
Coursework				70.00%
End of Module Assessment				30.00%
Assessments				
Full Time				
Coursework				
Assessment Type:	Continuous Assessment	% of total:		Non-Marked
Assessment Date:	n/a	Outcome addressed:		
Non-Marked:	Yes			
Assessment Description: Ongoing independent and group problem solving activities and feedback.				

Assessment Type:	Project	% of total:	70
Assessment Date:	n/a	Outcome addressed:	3,6
Non-Marked:	No		
Assessment Description: Long-form project which the student p	produces over the course o	of the entire semester. Student is required to choose to develop	an application in predictive analytics or

prescriptive analytics using deep learning or evolutionary techniques. End of Module Assessment Terminal Exam % of total: 30 Assessment Type: Assessment Date: End-of-Semester Outcome addressed: 1,2,3,4,5,6,7 Non-Marked: No Assessment Description: Terminal assessment exam taken over 2 hours with four questions of which the student must answer three to address the students' understanding of the underlying theories and concepts No Workplace Assessment **Reassessment Requirement** Repeat examination Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

Reassessment Description The repeat strategy for this module is an examination. All learning outcomes will be assessed in the repeat exam.

H8NNPA: Neural Networks & Prescriptive Analytics

Module Workload				
Module Target Workload Hours 0 Hours				
Workload: Full Time				
Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload
Lecture	Classroom & Demonstrations (hours)	24	Per Semester	2.00
Tutorial	Other hours (Practical/Tutorial)	24	Per Semester	2.00
Independent Learning	Independent learning (hours)	202	Per Semester	16.83
Total Weekly Contact Hours			4.00	

Module Resources		
Recommended Book Resources		
Goodfellow, I., Bengio, Y. & Co	urville, A (2016), , Deep Learning, MIT Press.	
Simon, D (2013), Evolutionary Optimization Algorithms, Wiley.		
Supplementary Book Resources		
Buduma, N (2017), Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, O'Reilly Media.		
Chang Wook, A (2006), Advances in Evolutionary Algorithms: Theory, Design and Practice (Studies in Computational Intelligence), Springer-Verlag.		
This module does not have any article/pa	aper resources	
This module does not have any other resources		
Discussion Note:		