H9DMML1: Data Mining and Machine Learning I

Module Code:		H9DMML1					
Long Title		Data Mining and Machine Learning I APPROVED					
Title		Data Mining and Machine Learning I					
Module Level:		LEVEL 9					
EQF Level:		7					
EHEA Level:		Second Cycle					
Credits:		5					
Module Coordinator:		MICHAEL BRAI	CHAEL BRADFORD				
Module Author:		Margarete Silva	argarete Silva				
Departments:		School of Comp	School of Computing				
Specifications of the qualifications and experience required of staff		MSc/PhD in a	Sc/PhD in a computing or cognate discipline. May have industry experience also.				
Learning Ou	tcomes						
On successfu	ıl completion of this modu	e the learner wil	be able to:				
#	Learning Outcome	Description					
LO1	Critically analyse fun problems in specific	damental data mining and knowledge discovery methodologies in order to assess best practice guidance when applied to data mining contexts					
LO2	Extract, transform, e.	cplore, and clean data in preparation for data mining and machine learning.					
LO3	Build and evaluate d	lata mining and machine learning models on various datasets and problem domains.					
LO4	Extract, interpret and	evaluate information and knowledge from various datasets.					
LO5	Critically review curre	nt data mining research and assess research methods applied in the field					
Dependencie	es						
Module Recommendations							
No recommendations listed							
Co-requisite Modules							
No Co-requisite modules listed							
Entry requirements		A le	A level 8 degree or its equivalent in any discipline				

H9DMML1: Data Mining and Machine Learning I

Module Content & Assessment

Indicative Content

Overview of Data Mining and Machine Learning

History and Evolution. Revision of data science methodologies: KDD, CRISP-DM. Data Security. Taxonomy and overview of data mining and machine learning techniques

General data pre-processing and transformation strategies

Intro to prediction. Identifying and Handling Missing Values. Looking for Outliers. Transformations for Single/Multiple Predictors. Adding/removing predictors. Binning . Feature

Prediction models evaluation

Data Splitting and Sampling Methods (Holdout, Cross-fold Validation, Stratification, etc.). Model Tuning and Overfitting. Determining the best model

Regression Models

Quantitative Methods of Performance. The Variance/Bias Trade-off. Linear Regression

Regression Models

Partial Least Squares Regression. K-Nearest Neighbours Regression

Regression Models

Regression Trees. Model-based Regression Trees

Regression Models

Rule-based Models. Model Tuning via LASSO, ElastiNet, and similar. Computing Considerations

Classification Models

Logistic Regression. Linear Discriminant Analysis

Classification Models

K-Nearest Neighbours. Naïve Bayes

Classification Models

Decision Trees (e.g., C5.0, Random Forests, etc.)

Unsupervised Machine Learning

Notions of distance and similarity. Euclidian vs. non-Euclidian spaces. Clustering: k-means, k-medoids

Unsupervised Machine Learning
Clustering for outlier detection. Plotting and understanding clusters. Cluster evaluation measures: DBIndex, WSSSE, scree plots

Assessment Breakdown	%
Coursework	100.00%

Assessments

Full Time

Coursework

% of total: Non-Marked Assessment Type: Formative Assessment Assessment Date: Outcome addressed: 1,2,3,4,5

Non-Marked: Yes

Assessment Description:

Formative assessment will be provided on the in-class individual or group activities. Feedback will be provided in written or oral format, or on-line through Moodle. In addition, in class discussions will be undertaken as part of the practical approach to learning.

Assessment Type: Project % of total: **Assessment Date:** n/a Outcome addressed: 1,2,3,4,5

Non-Marked: No

Assessment Description:

Produce a portfolio of studies that critically compare the performance of different machine learning methods applied to at least 3 related large datasets

No End of Module Assessment

No Workplace Assessment

Reassessment Requirement

Coursework Only

This module is reassessed solely on the basis of re-submitted coursework. There is no repeat written examination.

Reassessment Description

The repeat strategy for this module is to repeat the project, learners may build upon previous submissions

H9DMML1: Data Mining and Machine Learning I

Module Workload Module Target Workload Hours 0 Hours								
Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload				
Lecture	Classroom & Demonstrations (hours)	24	Every Week	24.00				
Tutorial	Other hours (Practical/Tutorial)	24	Every Week	24.00				
Independent Learning	Independent learning (hours)	77	Every Week	77.00				
Total Weekly Contact Hours								

Module Resources

Recommended Book Resources

Witten, I. H., Frank, E., Hall, M. A. & Pal, C. J.. (2016), Data Mining: Practical machine learning tools and techniques (4th ed), Morgan Kaufmann.

Lantz, B.. (2015), Machine learning with R (2nd ed), Packt Publishing Ltd.

Kelleher, J. D., Mac Namee, B., & D'Arcy, A.. (2015), Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies, MIT Press.

Supplementary Book Resources

Mueller, A. C.. (2016), Introduction to machine learning with Python, O'Reilly.

Hofmann, M., & Klinkenberg, R.. (2013), RapidMiner: Data Mining Use Cases and Business Analytics Applications, CRC Press.

Han, J., Pei, J., & Kamber, M.. (2011), Data mining: concepts and techniques (3rd ed), Elsevier.

Berthold, M., & Hand, D. J.. (2003), Intelligent data analysis: an introduction, Springer Science & Business Media.

This module does not have any article/paper resources

Other Resources

[website], UC Irvine Machine Learning Reposi,

[website], Kaggle platform for predictive modelling competitions,

[website], Datasets for Data Mining and Data Science,

kdnuggets.com/datasets/index. html

[website], Datacamp, http://www.datacamp.com

[website], Bloomberg,

https://www.bloomberg.com/europe

[website], Yahoo! Finance,

https://uk.finance.yahoo.com

[website], Google Finance,

https://www.google.com/finance

[website], Central Statistics Office,

http://www.cso.ie

[website], Eurostat,

http://ec.europa.eu/eurostat

[website], Data.gov, https://www.data.gov

[website], Amazon Web Services Public Datasets,

https://aws.amazon.com/datasets

[website], DataMarket,

https://datamarket.com

[website], The Pew Research Centre

http://www.pewresearch.org/data

[website], The Fama-French Data Library, http://mba.tuck.dartmouth.edu/pages/facu lty/ken.french/data_library.html

[website], Federal Reserve Economic Data (FRED),

https://fred.stlouisfed.org

Discussion Note: