H9SSP: Scalable Systems Programming

Module Code:		H9SSP				
Long Title		Scalable Systems Programming APPROVED				
Title		Scalable Systems Programming				
Module Level:		LEVEL 9				
EQF Level:		7				
EHEA Level:		Second Cycle				
Credits:		5				
Module Coordinator:		Horacio Gonzalez-Velez				
Module Author:		Margarete Silva				
Departments:		School of Computing				
Specifications of the qualifications and experience required of staff		and/or PhD degree in computer science or cognate discipline. May have industry experience also.				
Learning Outcomes						
On successful co	ompletion of this modu	ıle the learner will be able to:				
#	Learning Outcome	Description				
LO1	Demonstrate in-dept	oth knowledge of parallel algorithms on large amounts of data				
LO2	Identify and categoris	and categorise search techniques including similarity search and search engine technologies.				
LO3	Critically compare ar	ritically compare and contrast different data-stream processing and specialised algorithms.				
LO4	Critically analyse mir	cally analyse mining and clustering algorithms on large multi-dimensional datasets.				
LO5	Develop and implem	ement efficient programming solutions for problems relating to processing data at scale.				
Dependencies						
Module Recommendations						
No recommendations listed						
Co-requisite Modules						
No Co-requisite modules listed						
Entry requirements		A level 8 degree or its equivalent in any discipline				

H9SSP: Scalable Systems Programming

Module Content & Assessment

Indicative Content

MapReduce Extensions

Recursive and workflow systems for MapReduce. Resilient data sets

MapReduce Cost Models

Complexity and cost models for MapReduce with emphasis on communication costs and task networks

Near Neighbour search and Shingling Collaborative filtering and similarity sets. Document shingling and sub-strings

Hashing

Locality-sensitive hashing and distance measures. Additional methods for higher degrees of similarity.

Stream Data Model

Stream sources, stream queries, and processing. Sampling data

Streams Operations

Filtering, counting, combining and estimating.

Stream Processing
Building complex pipelines and models

Link Analysis

PageRank algorithm in its application to search engines. Efficient computation of PageRank. Link Spam. Hubs and authorities

Frequent itemsets

Market-Basket Model, many-to-many relationships. Association rules

A-Priori / Limited Pass Algorithms

Determine stages, sets and items under different monotonicity conditions.

Clusters for Streams and Parallelism

Bucket initialisation and merging. Parallel clustering.

Using Scalable Services

Deploying concurrent stream processing and batch processing pipelines

Assessment Breakdown	%
Coursework	100.00%

Assessments

Full Time

Coursework

Assessment Type: Formative Assessment % of total: Non-Marked **Assessment Date:** n/a Outcome addressed: 1.2.3.4.5

Non-Marked: Yes

Assessment Description:

Formative assessment will be provided on the in-class individual or group activities. Feedback will be provided in written or oral format, or on-line through Moodle. In addition, in class discussions will be undertaken as part of the practical approach to learning.

100 Continuous Assessment % of total: Assessment Type: Assessment Date: n/a Outcome addressed: 1,2,3,4,5

Non-Marked:

Assessment Description:

This practical assessment will evaluate the learners' knowledge and understanding of Scalable Systems Programming, possibly in the context of mining and/or clustering

No End of Module Assessment

No Workplace Assessment

Reassessment Requirement

Coursework Only

This module is reassessed solely on the basis of re-submitted coursework. There is no repeat written examination.

Reassessment Description

Reassessment of this module will be via project

H9SSP: Scalable Systems Programming

Module Workload Module Target Workload Hours 0 Hours Workload: Full Time												
								Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload
								Lecture	Classroom & Demonstrations (hours)	24	Every Week	24.00
Tutorial	Other hours (Practical/Tutorial)	24	Every Week	24.00								
Independent Learning	Independent learning (hours)	77	Every Week	77.00								
Total Weekly Contact Hours												

Module Resources

Recommended Book Resources

Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman. (2014), Mining of Massive Datasets, Cambridge University Press, p.476, [ISBN: 1107077230].

Martin Kleppmann. (2017), Designing Data-intensive Applications, Oreilly & Associates Incorporated, p.590, [ISBN: 1449373321].

Supplementary Book Resources

Andrew Kelleher, Adam Kelleher. (2018), Machine Learning in Production, [ISBN: 9780134116556].

- K. Hwang. (2017), Cloud and Cognitive Computing: A Machine Learning Approach, MIT Press, [ISBN: 10026203641X].
- B. Chambers, M. Zaharia. (2018), Spark The Definitive Guide, 1st. O'Reilly Media, [ISBN: 101491912219].
- Tom White. Hadoop: the Definitive Guide; Storage and Analysis at Internet Scale, [ISBN: 1491901632].

Recommended Article/Paper Resources

- B. Veloso, F. Leal, H. González-Vélez, B. Malheiro, J-C. Burguillo. (2018), Scalable data analytics using crowdsourced repositories and streams, Journal of Parallel and Distributed Computing, 122, p.1-10.
- J. Eckroth. (2018), A course on big data analytics, Journal of Parallel and Distributed Computing, 118, p.166.
- J. Kolodziej, H. González-Vélez, H.D. Karatza. (2017), High-performance modelling and simulation for big data applications, Simulation Modelling Practice and Theory, 76, p.1-2.
- J. Dean, S. Ghemawat. (2010), MapReduce: a flexible data processing tool., Commun. ACM, 53(1), p.72-77.

This module does not have any other resources

Discussion	