H9QC: Quantum Computing

Module Code:		9QC				
Long Title		Quantum Computing APPROVED				
Title		Quantum Computing				
Module Level:		LEVEL 9				
EQF Level:		7				
EHEA Level:		Second Cycle				
Credits:		5				
Module Coordinator:		Horacio Gonzalez-Velez				
Module Author:		MICHAEL BRADFORD				
Departments:		School of Computing				
Specifications of the qualifications and experience required of staff		This module requires a lecturer holding a Master's degree or higher, in a discipline with a significant programming/mathematics component. e.g. Computer Science, Mathematics, Computational Physics. Lecturer: Mr. Michael Bradford				
Learning Ou	tcomes					
On successful completion of this module the learner will be able to:						
#	Learning Outcome	Description				
LO1	Interpret and apply n	mathematical and quantum mechanical principles to qubit systems.				
LO2	Critically assess the	ne similarities and differences between quantum and classical computation.				
LO3	Analyse computation	nal problems and formulate solutions through the implementation of algorithms for quantum computers.				
Dependencies						
Module Recommendations						
No recommendations listed						
Co-requisite Modules						
No Co-requisite modules listed						
Entry requirements		A cognate level 8 degree.				

H9QC: Quantum Computing

Module Content & Assessment

Indicative Content

Introduction

Results from the theory of quantum mechanics. Spin and polarization. Measurements/Observables. Randomness and probability. Bits and Qubits. Quantum parallelism and interference

Linear Vector Spaces and Hilbert Spaces

Review of linear spaces. Hilbert spaces. Dirac notation. Operations and operators.

Matrix Representations

The Bloch Sphere. Pauli Matrices. Orthogonal and unitary matrices. Operations and operators. Eigenvectors and eigenvalues.

Quantum Circuits

Logic Gates. Reversibility. Multi-qubit Gates. Diagrammatic representation. Deutsch's Algorithm.

Programming for Quantum Computing

Programming environments. Language support. Simulation. Quantum Computing cloud services.

Entanglement

Entangled states. Bell's Inequalities. Using the CNOT gate. No Cloning Theorem. Quantum Teleportation

Applications

Quantum Cryptography. Quantum Key Distribution. Ekert Protocol. BB48 Protocol. Dense coding.

Quantum Fourier Transform

Fourier Series. Discrete Fourier Transform. Quantum Fourier Transform.

Quantum Algorithms

Deutsch-Josza Algorithm. Simon's Algorithm.

Quantum Algorithms

Grover's Search Algorithm

Quantum Algorithms

Schor's Algorithm.

Ramifications of Quantum Computing

Quantum Hardware. Quantum Supremacy. Data Security

Assessment Breakdown	%		
Coursework	40.00%		
End of Module Assessment	60.00%		

Assessments

Full Time

Сი		ALC	10	rk

Assessment Type: Continuous Assessment

% of total: 40
Outcome addressed: 1.3

Non-Marked: No

Assessment Description:

Assessment Date:

Design and implement a QC circuit to model and solve problems.

Assessment Type: Formative Assessment % of total: Non-Marked

Assessment Date: n/a Outcome addressed: 1,2,3

Non-Marked: Yes

Assessment Description:

Formative assessment will be undertaken utilising exercises and short answer questions during certain tutorials. In class discussions will be undertaken on contemporary topics. Feedback will be provided individually or as a group in oral format.

End of Module Assessment

 Assessment Type:
 Terminal Exam
 % of total:
 60

 Assessment Date:
 End-of-Semester
 Outcome addressed:
 1,2,3

Non-Marked: No

Assessment Description:

n/a

No Workplace Assessment

Reassessment Requirement

Repeat examination

Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

Reassessment Description

Learners who fail this module will be required to sit a repeat examination where all learning outcomes will be examined.

H9QC: Quantum Computing

Module Workload										
Module Target Workload Hours 0 Hours										
Workload: Full Time										
Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload						
Lecture	Classroom & Demonstrations (hours)	24	Every Week	24.00						
Tutorial	Other hours (Practical/Tutorial)	24	Every Week	24.00						
Independent Learning	Independent learning (hours)	77	Every Week	77.00						
Total Weekly Contact Hours										

Module Resources

Recommended Book Resources

Michael A. Nielsen, Isaac L. Chuang. (2010), Quantum Computation and Quantum Information, Cambridge University Press, p.702, [ISBN: 9781107002173].

Bernard Zygelman. (2018), A First Introduction to Quantum Computing and Information, Springer, p.233, [ISBN: 3319916289].

N. David Mermin. (2007), Quantum Computer Science, Cambridge University Press, p.233, [ISBN: 0521876583].

Supplementary Book Resources

Chris Bernhardt. (2019), Quantum Computing for Everyone, MIT Press, p.216, [ISBN: 0262039257].

This module does not have any article/paper resources

This module does not have any other resources

Discussion Note: