H9SCP: Scalable Cloud Programming

Module Code:		H9SCP						
Long Title		Scalable Cloud Programming APPROVED						
Title		Scalable Cloud Programming						
Module Level:		LEVEL 9						
EQF Level:		7						
EHEA Level:		Second Cycle						
Credits:		10						
Module Coordinator:		loracio Gonzalez-Velez						
Module Author:		oel Cosgrave						
Departments:								
Specifications of the qualifications and experience required of staff		MSc and/or PhD degree in computer science or cognate discipline. Experience lecturing in the field. May have industry experience also.						
Learning Outcomes								
On successful of	completion of this modu	e the learner will be able to:						
#	Learning Outcome	Description						
LO1	Identify and critically	evaluate functional and non-functional characteristics of parallel workloads on cloud platforms						
LO2	Analyse sequential p	programs to identify suitable candidates for parallelisation.						
LO3	Demonstrate compe	npetence in writing parallel programs using scalable algorithms and techniques						
LO4	Recognise and desc	cribe techniques and tools to improve the productivity of parallel programming on emerging computing architectures						
LO5	Identify and critically	ly evaluate system-specific levels of parallelism and co-scheduling of computation for scalability and resilience.						
Dependencies								
Module Recommendations								
No recommendations listed								
Co-requisite Modules								
No Co-requisite modules listed								
Entry requirements		Internal to the programme						

H9SCP: Scalable Cloud Programming

Module Content & Assessment

Indicative Content

Parallel Programming Preliminaries

Sequential Algorithms vs. Parallel algorithms. Parallelism vs Concurrency. Process Management. Multitasking

Parallel and Distributed Software

Threads. Coordinating Process and Threads. Shared-Memory. Distributed Memory. Programming Hybrid Systems.

Paradigms of Parallel Computing in the Cloud. SPMD and HPC-style parallelism. Many-Task Parallelism.

Parallel Software Patterns

Data- vs. Process Parallelism. Data patterns: Map, reduce, scan, gather. Collectives. Task Farms and Pipelines

MapReduce

MapReduce and Graph Data-flows. Recursive and workflow systems for MapReduce.

MapReduce Cost Models

Complexity and cost models for MapReduce with emphasis on communication costs and task networks.

Multi-stage and data-flow computing
Resilient Distributed Data Sets (RDDs). RDDs vs DAG Tasks.

Streaming Data Model

Stream sources, stream queries, and processing. Sampling data

Stream Operations

Filtering, counting, combining and estimating

Stream Processing

Building complex pipelines and models

Cloud Performance

Metrics and Benchmarks. Autoscaling, Scale-Out, Scale-up and Mixed Scaling. Scaling Strategies

Deploying concurrent stream processing and batch processing pipelines

Assessment Breakdown	%	
Coursework	50.00%	
End of Module Assessment	50.00%	

Assessments

Full Time

Assessment Type: Project **Assessment Date:** n/a

% of total: Outcome addressed: 50 3.4.5

No

Assessment Description:

Develop a complex scalable cloud computing solution, which should be informed by a review of recent work in the domain, and should be submitted in the form of a conference-style report The working solution will be demonstrated to the lecturer, either by means of a project video or in-class presentation. Marked elements include the methodology, implementation, clarity of presentation and depth of understanding of the work carried out and its broader implications.

Assessment Type: Written (0080) **Assessment Date:** n/a Outcome addressed: 1,2,3

Assessment Description:

The test will assess learners' knowledge and understanding of data and computing architectures, programming models, and storage concepts. A sample question, marking scheme, and solution, is provided in Appendices.

No End of Module Assessment

No Workplace Assessment

Reassessment Requirement

Repeat examination

Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

Reassessment Description

Reassessment of this module will be via proctored examination

H9SCP: Scalable Cloud Programming

Module Workload							
Module Target Workload Hours 0 Hours							
Workload: Full Time							
Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload			
Lecture	No Description	36	Per Semester	3.00			
Tutorial	No Description	24	Per Semester	2.00			
Independent Learning	No Description	190	Per Semester	15.83			
Total Weekly Contact Hours							

Module Resources

Recommended Book Resources

lan Foster, Dennis B. Gannon. (2017), Cloud Computing for Science and Engineering, MIT Press, p.392, [ISBN: 978-0-262-03724-2].

Supplementary Book Resources

Peter Pacheco. (2019), An Introduction to Parallel Programming, 2nd Edition. Morgan Kaufmann, Amsterdam, [ISBN: 0128046058].

Kai Hwang. (2017), Cloud Computing for Machine Learning and Cognitive Applications, MIT Press, Cambridge, MA., [ISBN: 026203641X].

K.C. Wang. (2018), Systems Programming in Unix/Linux, Springer, [ISBN: 978-3-319-92428-1].

H Karau et al.. (2015), Learning Spark, 1st edition. O'Reilly Media, [ISBN: 1449358624].

Tom White. (2015), Hadoop: The Definitive Guide, 4th Edition. O'Reilly Media, [ISBN: 1449311520].

Maurice Herlihy, Nir Shavit. (2012), The Art of Multiprocessor Programming, Revised Edition. Morgan Kaufmann, Amsterdam, [ISBN: 0123973376].

William Gropp, Ewing Lusk, Anthony Skjellum. (2015), Using MPI: Portable Parallel Programming with the Message-Passing Interface (Scientific and Engineering Computation), 3rd Edition. MIT Press, Cambridge, MA, [ISBN: 0262527391].

Ruud van der Pas,Eric Stotzer,Christian Terboven. (2017), Using OpenMP: The Next Step: Affinity, Accelerators, Tasking, and SIMD (Scientific and Engineering Computation), 1st Edition. MIT Press, Cambridge, MA, [ISBN: 0262534789].

Joanna Kołodziej (Editor), Horacio González-Vélez (Editor). (2019), High-Performance Modelling and Simulation for Big Data Applications: Selected Results of the COST Action IC1406 cHiPSet, 1. Springer, Cham, [ISBN: 3030162710].

Recommended Article/Paper Resources

R. Buyya et al.. (2019), Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade., ACM Computing Surveys, 51(5), [ISSN: 0360-0300].

J. Dean, S. Ghemawat. (2010), MapReduce: a flexible data processing tool., Communications of the ACM, 53(1), [ISSN: 0001-0782].

H. González-Vélez, M. Leyton. (2010), A survey of algorithmic skeleton frameworks: high-level structured parallel programming enablers, Software: Practice and Experience, 40(12), [ISSN: 0038-0644].

N. P. Jouppi et al.. (2017), In-datacenter performance analysis of a tensor processing unit.

This module does not have any other resources

Discussion Note: