H6IMBC: Introduction to Mathematics for Business & Computing

Module Code:		Н6ІМВС					
Long Title		Introduction to Mathematics for Business & Computing DRAFT					
Title		Introduction to Mathematics for Business & Computing					
Module Level:		LEVEL 6					
EQF Level:		5					
EHEA Level:		Short Cycle					
Credits:		5					
Module Coordinator:		PRAMOD PATHAK					
Module Author:		MICHAEL BRADFORD					
Departments:		School of Computing					
Specifications of the qualifications and experience required of staff							
Learning Outcomes							
On successful completion of this module the learner will be able to:							
#	Learning Outcome	Description					
LO1	Explain mathematica	concepts such as sets and operations.					
LO2	Associate the rules of	f sets and operations to the areas of Relations and Functions.					
LO3	Describe the core pr	nciples of logic and the foundational role that it plays in mathematics and computer science.					
LO4	Apply set theoretical	concepts and methods of counting to solve problems involving calculations in probability and statistics.					
LO5	Approach and solve	lve problems in the area of computing using the appropriate Mathematical techniques.					
Dependencies							
Module Recommendations							
No recommendations listed							
Co-requisite Modules							
No Co-requisite modules listed							
Entry requirements							

H6IMBC: Introduction to Mathematics for Business & Computing

Module Content & Assessment

Indicative Content

Sets and Operations

• Notation Predicates. • Set Operations Solving • Problems Using Venn Diagrams • Principle of Duality Algebra of Sets • Cardinality & Principle of Inclusion and Exclusion • Cartesian Product

Functions and Relations

• Functions from one set to another. • Partial and Total Functions. • Injections and Surjections. • Composition of Functions. • Binary Relations. • Equivalence Relations. • Partial

Logic

• Propositions & Logic. • Predicates and Quantifiers. • Truth Tables. • Logic Equations. • Disjunctive Normal Form.

Statistics and Probability
• Principles of counting - permutations and combinations. • Probability. • Probability rules. • Types of Data Frequency distributions. • Grouped and ungrouped data. • Descriptive measures. • Probability. • Distributions. • The Normal Distribution.

Assessment Breakdown	%	
Coursework	50.00%	
End of Module Assessment	50.00%	

Assessments

Full Time

Coursework

Assessment Type: **Assessment Date:** Outcome addressed: 1,2,3,4,5

Non-Marked:

Assessment Description:

Continuous assessment via project work, homework assignments, and in-class quizzes throughout the semester

End of Module Assessment

Assessment Type: Terminal Exam **Assessment Date:** End-of-Semester Outcome addressed: 3,4,5

Non-Marked:

Assessment Description:

End-of-Semester Final Examination

No Workplace Assessment

Reassessment Requirement

Repeat examination

Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

H6IMBC: Introduction to Mathematics for Business & Computing

Module Workload								
Module Target Workload Hours 0 Hours Workload: Full Time								
Lecture	No Description		2	Every Week	2.00			
Tutorial	No Description		1	Every Week	1.00			
Independent Learning	No Description		7.5	Every Week	7.50			
	ontact Hours	3.00						
Workload: Part Time								
Workload Type	Workload Description		Hours	Frequency	Average Weekly Learner Workload			
Lecture	No Description		3	Every Week	3.00			
Total Weekly Contact Hours								

Module Resources

Recommended Book Resources

David Makinson. (2012), Sets, Logic and Maths for Computing, 2nd. Springer, p.304, [ISBN: 1447124995].

John Schiller, R. Alu Srinivasan, Murray Spiegel. (2012), Schaum's Outline of Probability and Statistics, 4th Edition, 4th. McGraw-Hill, p.432, [ISBN: 007179557X].

Supplementary Book Resources

Peter Grossman. (2008), Discrete mathematics for computing, 3rd. Basingstoke [England]; Palgrave Macmillan, 2009., [ISBN: 0230216110].

This module does not have any article/paper resources

This module does not have any other resources

Discussion Note: