H6DISMTHS: Discrete Mathematics

Module Code:		H6DISMTH	H6DISMTHS				
Long Title		Discrete Mathematics APPROVED					
Title		Discrete Mathematics					
Module Level:		LEVEL 6					
EQF Level:		5					
EHEA Level:		Short Cycle	Short Cycle				
Credits:		5					
Module Coordinator:		MICHAEL I	EL BRADFORD				
Module Author:		MICHAEL I	HAEL BRADFORD				
Departments:		School of C	hool of Computing				
Specifications of the qualifications and experience required of staff		Master's d	er's degree in mathematics, computing or cognate discipline. May have industry experience also.				
Learning Outco	omes	-					
On successful o	completion of this modu	ıle the learne	er will be able to:				
#	Learning Outcome	Description					
LO1	Construct logical ma	athematical arguments and proofs.					
LO2	Apply set algebra an	nd logic operations to demonstrate problem solving and mathematical reasoning capabilities.					
LO3	Associate the rules of	of sets and operations to the areas of Relations and Functions.					
LO4	Construct and invest	nd investigate a range of functions and describe their representations.					
LO5	Apply set theoretical	al concepts and methods of counting to solve combinatorial problems.					
LO6	Apply graph theory of	y concepts to represent a set of finite objects and their inter-relationships.					
Dependencies							
Module Recommendations							
No recommendations listed							
Co-requisite Modules							
No Co-requisite modules listed							
Entry requirements			See section 4.2 Entry procedures and criteria for the programme including procedures recognition of prior learning				

H6DISMTHS: Discrete Mathematics

Module Content & Assessment

Indicative Content

Logic & Proof

Propositional Logic. Boolean Operators. Truth Tables. Boolean Expressions

Logic & Proof

Predicates and Quantifiers. Methods of Mathematical Proof

Set TheoryNaïve Set Theory. Finite and infinite sets. Set Operations

Set Theory Partitions . Product Set and Power Set

Relations & Functions

Binary Relations. Properties of Relations. Equivalence Relations

Relations & Functions

Partial Orders. Properties of Functions. Composition of Functions. Inverse Functions

Recurrence Relations & Generating Functions

Polynomials. Ordinary and Exponential Generating Functions

Recurrence Relations & Generating Functions

Sequences and Recurrence Relations. Solution of Recurrence Relations. Linear Homogeneous Recurrence Relations. Linear Non-Homogeneous Recurrence Relations

Combinatorics

The Sum Rule and the Product Rule. The Pigeonhole Principle. The Inclusion-Exclusion Principle

Combinatorics

The Factorial Function. Permutations and Combinations

Graph Theory

Definition and Examples. Directed Graphs. Walks, Trails, Paths, Circuits, and Cycles

Trees. Planar Graphs. Colouring and Matching Graphs.

Assessment Breakdown	%	
Coursework	40.00%	
End of Module Assessment	60.00%	

Assessments

Full Time

Coursework

Non-Marked Assessment Type: Formative Assessment % of total: **Assessment Date:** n/a Outcome addressed: 1.2.3.4.5.6

Non-Marked: Yes

Assessment Description:

Ongoing independent and group class activities and feedback.

Assessment Type: Continuous Assessment % of total: 40 **Assessment Date:** n/a Outcome addressed: 1.2.3.4.5

Non-Marked: No

Assessment Description:

A set of questions relating to Logic, Set Theory, Relations & Functions, and Recurrence Relations & Generating Functions, and Combinatorics.

End of Module Assessment

Terminal Exam % of total: Assessment Type: **Assessment Date:** End-of-Semester Outcome addressed: 1,2,3,4,5,6

Non-Marked: No

Assessment Description:

Written examination with questions from all module topic areas.

No Workplace Assessment

Reassessment Requirement

Repeat examination

Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

Reassessment Description

The repeat strategy for this module is an examination. All learning outcomes will be assessed in the repeat exam.

H6DISMTHS: Discrete Mathematics

Module Workload Module Target Workload Hours 0 Hours									
									Workload: Full Time
Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload					
Lecture	Classroom & Demonstrations (hours)	24	Per Semester	2.00					
Tutorial	Other hours (Practical/Tutorial)	36	Per Semester	3.00					
Independent Learning	Independent learning (hours)	65	Per Semester	5.42					
Total Weekly Contact Hours									
Workload: Part Time									
Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload					
Lecture	No Description	24	Every Week	24.00					
Tutorial	No Description	36	Every Week	36.00					
Independent Learning	No Description	65	Every Week	65.00					
	ontact Hours	60.00							

Module Resources

Recommended Book Resources

Ferland K.. (2017), Discrete Mathematics and Applications (2nd ed), Chapman and Hall/CRC.

Kenneth H. Rosen. (2018), Discrete Mathematics and Its Applications, 8th Edition. McGraw-Hill Education, [ISBN: 978-1260091991].

Supplementary Book Resources

Oscar Levin. (2016), Discrete Mathematics, Createspace Independent Publishing Platform, p.342, [ISBN: 978-1534970748].

Jonathan L. Gross, Jay Yellen, Mark Anderson. (2018), Graph Theory and Its Applications, Chapman & Hall/CRC, p.577, [ISBN: 978-1482249484].

This module does not have any article/paper resources

This module does not have any other resources

Discussion Note: