
Page 1 of 4

H6PROG2: Programming II
Module Code: H6PROG2

Long Title Programming II APPROVED

Title Programming II

Module Level: LEVEL 6

EQF Level: 5

EHEA Level: Short Cycle

Credits: 5

Module Coordinator: FRANCES SHERIDAN

Module Author: FRANCES SHERIDAN

Departments: School of Computing

Specifications of the qualifications
and experience required of staff MSc Degree in Computing or cognate discipline, or the equivalent experience in industry as programmer.

Learning Outcomes

On successful completion of this module the learner will be able to:

Learning Outcome Description

LO1 Apply theoretical concepts to a range of contexts and problem domains

LO2 Formulate computer program solutions to well defined abstract problems

LO3 Use object-oriented techniques such as interfaces, inheritance, and generics to package ADTs appropriately

LO4 Analytically incorporate ADTs and associated implementations into systems that use complex data structures.

Dependencies

Module Recommendations

No recommendations listed

Co-requisite Modules

No Co-requisite modules listed

Entry requirements Learners should have attained the knowledge, skills and competence gained from stage 1 of the BSc (Hons) in Data
Science

Page 2 of 4

H6PROG2: Programming II
Module Content & Assessment
Indicative Content

Data Connectivity
• Low Level and High Level File I/O . • Database Programming - CRUD . • Parsing Data Exchange Formats e.g. JSON, XML • File Manipulation . • With with UNIX pipes
(accepting input producing output)

Exception Handling
• Dealing with errors via exception handling mechanisms • Syntactic and semantic errors (run-time and before) • Error mitigation

Inheritance and Polymorphism
• The role of reuse and inheritance . • How to utilize polymorphic constructs in programming . • Use of support libraries from external sources

Regular Expressions
• Introduction to Regular Expressions

Regular Expressions 2
• Developing programs for data processing activities (e.g., data extraction, cleaning, merging, aggregation, analysis, reporting) using regular expressions

Design Patterns
• What are Design Patterns? / Gang of Four patterns . • Template Pattern . • Strategy Pattern . • Observer Pattern

Design Patterns 2
• Composite Pattern . • Design Patterns for event handling . • Stream Processing

Software Testing
• The importance of testing • Methods of testing . • Writing a Unit Test . • Preconditions and post conditions . • Black Box and White Box

Linear Data Structures
• Refresher on Data Structures . • Lists (Singly linked and doubly linked)

Linear Data Structures
• Stacks . • Queue

Linear Data Structures
• Operations performed on Linear Data Structures

Associative Data Structures
• Key-value pairs . • Maps (Hash-Maps) . • JSON

Associative Data Structures
• Extending in-built classes with new functionality (e.g. new hashing algorithms for Maps)

Assessment Breakdown %

Coursework 100.00%

Assessments

Full Time
Coursework

Assessment Type: Continuous Assessment % of total: Non-Marked
Assessment Date: n/a Outcome addressed: 1,2,3,4
Non-Marked: Yes
Assessment Description:
Ongoing independent and group programming activities and feedback.

Assessment Type: Continuous Assessment % of total: 50
Assessment Date: n/a Outcome addressed: 1,2,3,4
Non-Marked: No
Assessment Description:
Each week student will submit program code to the Moodle server for grading. Student will be supplied with an interface specification for the program(s) and the grading will be
conducted via automated unit testing based on unknown inputs. Students will be examined on their ability to convey understanding of the programs which they have developed.

Assessment Type: Practical % of total: 50
Assessment Date: n/a Outcome addressed: 1,2,3,4
Non-Marked: No
Assessment Description:
The students will have to develop solutions to programming problems relevant to all material covered in the module using a proctored computer in an examination environment.
There will be a written component to assess the student ability to determine errors in a program.

No End of Module Assessment

No Workplace Assessment

Reassessment Requirement

Repeat examination
Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

Reassessment Description
The repeat strategy for this module is a practical programming examination. Students will be afforded an opportunity to repeat the examination at specified times throughout
the year and all learning outcomes will be assessed in the repeat exam.

Page 3 of 4

H6PROG2: Programming II
Module Workload
Module Target Workload Hours 0 Hours

Workload: Full Time

Workload Type Workload Description Hours Frequency Average Weekly
Learner Workload

Lecture Classroom & Demonstrations (hours) 24 Per
Semester

2.00

Tutorial Other hours (Practical/Tutorial) 24 Per
Semester

2.00

Independent Learning Independent learning (hours) 77 Per
Semester

6.42

Total Weekly Contact Hours 4.00

Page 4 of 4

Module Resources
Recommended Book Resources

Lutz, M.. (2013), Learning Python (5th ed), O’Reilly Media.

Supplementary Book Resources

Beazley, D. & Jones, B. K.. (2013), Python Cookbook (3rd ed), O’Reilly Media.

This module does not have any article/paper resources

This module does not have any other resources

Discussion Note:

	H6PROG2: Programming II
	H6PROG2: Programming II
	Module Content & Assessment
	Assessments
	Full Time
	H6PROG2: Programming II
	Module Workload
	Module Resources

