H7AML: Advanced Machine Learning

Module Code:		H7AML				
Long Title		Advanced Machine Learning APPROVED				
Title		Advanced Machine Learning				
Module Level:		LEVEL 7				
EQF Level:		6				
EHEA Level:		First Cycle				
Credits:		10				
Module Coordinator:		Arghir Moldovan				
Module Author:		Arghir Moldovan				
Departments:		School of Computing				
Specifications of the qualifications and experience required of staff		MSc and/or PhD degree in computer science or cognate discipline. May have industry experience also.				
Learning Outco	omes					
On successful c	completion of this modu	ile the learner will be able to:				
#	Learning Outcome	Description				
LO1	Apply and evaluate the	ne efficacy of advanced data preparation methods				
LO2	Build and apply adva	ranced methods for prediction and forecasting in various problem domains				
LO3	Build and evaluate a	advanced machine learning models in various problem domains				
LO4	Extract, interpret and	ret and analyse information and knowledge from non-trivial real-world datasets				
LO5	Summarise, critique	ue and present the results of advanced machine learning models in various problem domains				
Dependencies						
Module Recom	mendations					
67243 H6DMML		Data Mining and Machine Learning				
Co-requisite M	odules					
No Co-requisite	modules listed					
Entry requirements		learners should have attained the knowledge, skills and competence gained from stage 2 of the BSc (Hons) in Data Science				

H7AML: Advanced Machine Learning

Project

Team project; applying methods of the module to real world datasets such as Kaggle, Dublinked.ie etc.

Easter Examination

n/a

No

n/a

No

Indicative Content					
General Strategies Revisited Increasing data complexity and s	ize with fundamental methods. Considerations	of Complexity on Computing Requirement	s		
General Strategies Revisited Dimensionality Reduction (PCA,	MCA, etc.). Feature Engineering. Measuring Pr	redictor Importance			
General Strategies Revisited Understanding, Detecting and Ha errors, improper variable encodin		ing Factors that can Affect Model Perform	ance; e.g. Type III errors, selection bias, measurement		
Advanced Regression Models Regression revision, and penalise	ed models				
Advanced Regression Models Generalised Linear Modelling. Au	tomated Linear Modelling via Bagging and Boo	osting			
Ensembles Ensembles:. Random Forest. Vot	ing. Stacking. Bagging and Boosting Methods	(e.g. XGBoost, AdaBoost, CART aggregat	ion etc.)		
Black Box Methods Support Vector Machines and Su	pport Vector Regression				
Black Box Methods Neural Networks: Classic Topolog	gies and Activation Functions; Back Propagatic	on; Gradient Descent and Stochastic Grad	ent Descent; Hyperparameter Optimisation techniques		
Deep Regression Models A brief introduction to deep learni volumes required).	ng applied to regression problems (e.g. GLMN	et). Special emphasis to be played on whe	en these methods are(n't) appropriate (e.g. data		
	%				
Assessment Breakdown		Coursework			
Assessment Breakdown Coursework			100.00%		
			100.00%		
Coursework			100.00%		
Coursework Assessments			100.00%		
Coursework Assessments Full Time	Continuous Assessment	% of total:	100.00%		
Coursework Assessments Full Time Coursework	Continuous Assessment n/a	% of total: Outcome addressed:			

% of total:

% of total:

Outcome addressed:

Outcome addressed:

50

3,4

50

1,2,5

No Workplace Assessment **Reassessment Requirement**

No End of Module Assessment

Assessment Type:

Assessment Date:

Assessment Type:

Assessment Date:

Non-Marked:

Assessment Description:

Assessment Description:

Non-Marked:

Repeat examination Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

Individual Hackathon where learners identify the fit and/or appropriateness of a variety of methods to one or more appropriately sized datasets.

Reassessment Description
The repeat strategy for this module is a terminal assessment. Students will be afforded an opportunity to repeat the assessment at specified times throughout the year and all learning outcomes will be assessed in the repeat assessment.

H7AML: Advanced Machine Learning

Module Workload							
Module Target Workload Hours 0 Hours							
Workload: Full Time							
Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload			
Lecture	Classroom & Demonstrations (hours)	24	Per Semester	2.00			
Tutorial	Other hours (Practical/Tutorial)	24	Per Semester	2.00			
Independent Learning	Independent learning (hours)	202	Per Semester	16.83			
Total Weekly Contact Hours							

Module Resources

Recommended Book Resources						
Hastie, T., Tibshirani, R. & Friedman, J Statistics.	Hastie, T., Tibshirani, R. & Friedman, J (2016), The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed), Springer Series in Statistics.					
James, G., Witten, D., Hastie, T. & Tibsh	James, G., Witten, D., Hastie, T. & Tibshirani, R (2017), An Introduction to Statistical Learning: with Applications in R, Springer Texts in Statistics.					
Kuhn, M. & Johnson, K (2013), Applied	Kuhn, M. & Johnson, K (2013), Applied Predictive Modeling, Springer.					
Shalev-Shwartz, S. & Ben-David, S (20	Shalev-Shwartz, S. & Ben-David, S (2014), Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press.					
Supplementary Book Resources						
Downey, B (2014), Think Stats: Explora	Downey, B (2014), Think Stats: Exploratory Data Analysis, (2nd ed).					
Goodfellow, I., Bengio, Y., & Courville, A (2016), Deep Learning, The MIT Press.						
Hearty, J (2016), Advanced Machine Le	Hearty, J (2016), Advanced Machine Learning with Python, Packt Publishing Ltd.					
Leskovec, J. Rajaraman, A., & Ullman, J	Leskovec, J. Rajaraman, A., & Ullman, J (2014), Mining of Massive Datasets, Cambridge University Press.					
Wickham, H. & Grolemund, G (2017), R	for Data Science: Import, Tidy, Transform, Visualize, and Model Data, O'Reilly.					
This module does not have any article/paper reso	urces					
Other Resources						
http://www.datacamp.com						
http://www.kdnuggets.com	http://www.kdnuggets.com					
http://www.r-bloggers.com						
Discussion Note:						