H6LA: Linear Algebra

Module Code:	H6LA
Long Title	Linear Algebra APPROVED
Title	Linear Algebra
Module Level:	LEVEL 6
EQF Level:	5
EHEA Level:	Short Cycle
Credits:	5
Module Coordinator:	MICHAEL BRADFORD
Module Author:	MICHAEL BRADFORD
Departments:	School of Computing
Specifications of the qualifications and experience required of staff	Master's degree in mathematics, computing or cognate discipline. May have industry experience also.
Learning Outcomes	
On successful completion of this module the learner will be able to:	
\#	Learning Outcome Description
LO1	Apply matrix algebra operations and investigate properties of matrices.
LO2	Define vector spaces and describe the structure of vector spaces in terms of linear independence, basis, and dimension.
LO3	Examine qualitative and quantitative aspects (e.g., such as norm and orthogonality) of vector spaces when presented as inner product spaces.
LO4	Determine if a system of linear simultaneous equations can be solved and if so provide a solution.
LO5	Describe the properties of linear transformations and determine how such transformations can be represented by matrices.
LO6	Investigate and apply coordinate free representations of linear transformations using Geometric Algebra.
Dependencies	Module Recommendations No recommendations listed Co-requisite Modules No Co-requisite modules listed Entry requirements

H6LA: Linear Algebra

Module Content \& Assessment			
Indicative Content			
Matrix Algebra Motivation and Context. Linear Equations. Matrix Operations. Types of Matrices			
Matrix Algebra Trace of a Matrix. Matrix Inversion.			
Matrix Algebra Permutations. Determinants. Minors and Cofactors			
Vector Spaces Definitions and examples. Linear Dependence. Basis and Dimension			
Vector Spaces Inner Product Spaces. Norms			
Vector Spaces Othogonalization. Linear Simultaneous Equations. Gaussian Elimination			
Linear Transformations Properties of Linear Transformations . Matrix Representation			
Linear Transformations Change of Basis. Eigenvalues and Eigenvectors. Characteristic and Minimal Polynomials			
Linear Transformations Cayley-Hamilton Theorem. Singular Value Decomposition			
Introduction to Geometric Algebra Motivation and Context. Axioms of Geometric Algebra. Vectors and Scalars. The Geometric Product			
Introduction to Geometric Algebra Analytical Geometry. Multivectors			
Introduction to Geometric Algebra Linear Transformations. Applications			
Assessment Breakdown			\%
Coursework			40.00\%
End of Module Assessment			60.00\%
Assessments			
Full Time			
Coursework			
Assessment Type: Assessment Date: Non-Marked: Assessment Description: Ongoing independent and	Continuous Assessment n/a Yes ities and feedback.	$\%$ of total: Outcome addressed:	Non-Marked $1,2,3,4,5,6$
Assessment Type: Assessment Date: Non-Marked: Assessment Description: A comprehensive set of qu	Continuous Assessment n/a No Matrix Algebra, Vector S	\% of total: Outcome addressed: sformations, and Geom	$\begin{aligned} & 40 \\ & 1,2,3,4,5,6 \end{aligned}$
Assessment Type: Assessment Date: Non-Marked: Assessment Description: Written examination with qu	Easter Examination n/a No module topic areas.	\% of total: Outcome addressed:	$\begin{aligned} & 60 \\ & 1,2,3,4,5,6 \end{aligned}$
No End of Module Assessment			
No Workplace Assessment			
Reassessment Requirement			
Repeat examination Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursew			
Reassessment Description The repeat strategy for this module is an examination. All learning outcomes will be assessed in the repeat exam.			

H6LA: Linear Algebra

Module Workload

Module Target Workload Hours 0 Hours

Workload: Full Time	Workload Description	Hours	Frequency	Average Weekly Learner Workload
Workload Type	Classroom \& Demonstrations (hours)	24	Per Semester	2.00 Lecture Tutorial Independent Learning Other hours (Practical/Tutorial)

Strang, G.. (2016), Introduction to Linear Algebra (5th ed), Wellesley-Cambridge Press.
Lipschutz, S. \& Lipson M.. (2012), Schaum's Outline of Linear Algebra (5th ed), McGraw Hill Education.
Dorst, L., Fontijne D. \& Mann S.. (2009), Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry (2nd ed), Morgan Kaufmann.
Supplementary Book Resources
Datta, K. B.. (2016), Matrix and Linear Algebra: Aided with MATLAB (3rd ed), Prentice-Hall of India Pvt Ltd.
Anton, H.. (2013), Elementary Linear Algebra (11th ed), Wiley.
Hestenes, D.. (2008), New Foundations for Classical Mechanics (2nd ed), Springer.
[Website], MIT Open Course Ware, Massachusetts Institute of Technology. Linear Algebra Lecture Series by Gilbert Strang @ https://ocw.mit.edu/courses/mathematics/ 18-06-linear-algebra-spring-2010/.
[Website], University of Cambridge, Geometric Algebra Lecture Series by Chris Doran @ http://geometry.mrao.cam.ac.uk/2016/10/g eometric-algebra-2016/.

