H6LA: Linear Algebra

Module Code:		H6LA					
Long Title		Linear Algebra APPROVED					
Title		Linear Algebra					
Module Level:		EVEL 6					
EQF Level:							
EHEA Level:		Cycle					
Credits:							
Module Coordinator:		MICHAEL BRADFORD					
Module Author:		MICHAEL BRADFORD					
Departments:		School of Computing					
Specifications of the qualifications and experience required of staff		s degree in mathematics, computing or cognate discipline. May have industry experience also.					
Learning Outco	omes						
On successful c	ompletion of this modu	ile the learner will be able to:					
#	Learning Outcome	ome Description					
LO1	Apply matrix algebra	operations and investigate properties of matrices.					
LO2	Define vector spaces	spaces and describe the structure of vector spaces in terms of linear independence, basis, and dimension.					
LO3	Examine qualitative a	and quantitative aspects (e.g., such as norm and orthogonality) of vector spaces when presented as inner product spaces.					
LO4	Determine if a syster	em of linear simultaneous equations can be solved and if so provide a solution.					
LO5	Describe the propert	perties of linear transformations and determine how such transformations can be represented by matrices.					
LO6	Investigate and apply	e and apply coordinate free representations of linear transformations using Geometric Algebra.					
Dependencies							
Module Recom	mendations						
No recommendations listed							
Co-requisite Modules							
No Co-requisite modules listed							
Entry requirements		Learners should have attained the knowledge, skills and competence gained from stage 1 of the BSc (Hons) in Data Science					

H6LA: Linear Algebra

Module Content & Assessment						
Indicative Content						
Matrix Algebra Motivation and Context. Linear Equations. Matrix Operations. Types of Matrices						
Matrix Algebra Trace of a Matrix. Matrix Inversion.						
Matrix Algebra Permutations. Determinants. Minors and Cofactors						
Vector Spaces Definitions and examples. Linear Dependence. Basis and Dimension						
Vector Spaces Inner Product Spaces. Norms						
Vector Spaces Othogonalization. Linear Simultaneous Equations. Gaussian Elimination						
Linear Transformations Properties of Linear Transformations . Matrix Representation						
Linear Transformations Change of Basis. Eigenvalues and Eigenvectors. Characteristic and Minimal Polynomials						
Linear Transformations Cayley-Hamilton Theorem. Singular Value Decomposition						
Introduction to Geometric Algebra Motivation and Context. Axioms of Geometric Algebra. Vectors and Scalars. The Geometric Product						
Introduction to Geometric Algebra Analytical Geometry. Multivectors						
Introduction to Geometric Algebra Linear Transformations. Applications						
Assessment Breakdown	%					
Coursework	40.00%					
End of Module Assessment	60.00%					
Accessments						

Assessments

Full Time			
Coursework			
Assessment Type:	Continuous Assessment	% of total:	Non-Marked
Assessment Date:	n/a	Outcome addressed:	1,2,3,4,5,6
Non-Marked:	Yes		
Assessment Description: Ongoing independent and group	class activities and feedback.		
Assessment Type:	Continuous Assessment	% of total:	40
Assessment Date:	n/a	Outcome addressed:	1,2,3,4,5,6
Non-Marked:	No		
Assessment Description: A comprehensive set of question	s relating to Matrix Algebra, Vector Spaces, Li	inear Transformations, and Geometric Alge	bra.
Assessment Type:	Easter Examination	% of total:	60
Assessment Date:	n/a	Outcome addressed:	1,2,3,4,5,6
Non-Marked:	No		
Assessment Description: Written examination with question	ns from all module topic areas.		
No End of Module Assessment			
No Workplace Assessment			
Reassessment Requirement			
Repeat examination Reassessment of this module will	consist of a repeat examination. It is possible	that there will also be a requirement to be r	reassessed in a coursework element.
Reassessment Description The repeat strategy for this modul	e is an examination. All learning outcomes wil	I be assessed in the repeat exam.	

H6LA: Linear Algebra

Module Workload								
Module Target Workload Hours 0 Hours								
Workload: Full Time								
Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload				
Lecture	Classroom & Demonstrations (hours)		Per Semester	2.00				
Tutorial	Other hours (Practical/Tutorial)		Per Semester	1.00				
Independent Learning	Independent learning (hours)		Per Semester	7.42				
Total Weekly Contact Hours								

Recommended Book Resources

Strang, G.. (2016), Introduction to Linear Algebra (5th ed), Wellesley-Cambridge Press.

Lipschutz, S. & Lipson M.. (2012), Schaum's Outline of Linear Algebra (5th ed), McGraw Hill Education.

Dorst, L., Fontijne D. & Mann S.. (2009), Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry (2nd ed), Morgan Kaufmann.

Supplementary Book Resources

Datta, K. B.. (2016), Matrix and Linear Algebra: Aided with MATLAB (3rd ed), Prentice-Hall of India Pvt Ltd.

Anton, H.. (2013), Elementary Linear Algebra (11th ed), Wiley.

Hestenes, D.. (2008), New Foundations for Classical Mechanics (2nd ed), Springer.

This module does not have any article/paper resources

Other Resources

[Website], MIT Open Course Ware, Massachusetts Institute of Technology. Linear Algebra Lecture Series by Gilbert Strang @ https://ocw.mit.edu/courses/mathematics/ 18-06-linear-algebra-spring-2010/.

[Website], University of Cambridge, Geometric Algebra Lecture Series by Chris Doran @ http://geometry.mrao.cam.ac.uk/2016/10/g eometric-algebra-2016/.

Discussion Note: