H9MSO: Modelling, Simulation & Optimization

Module Code:		H9MSO					
Long Title		Modelling, Simulation & Optimization SUPERSEDED					
Title		Modelling, Simulation & Optimization					
Module Level:		LEVEL 9					
EQF Level:		7					
EHEA Level:		Second Cycle					
Credits:		10					
Module Coordinator:		Ade Fajemisin					
Module Author:		Margarete Silva					
Departments:		School of Computing					
Specifications of the qualifications and experience required of staff		This module requires a lecturer holding a Master's degree or higher, in a discipline with a significant statistics component. e.g. Statis Mathematics, Economics					
Learning Outcomes							
On successful c	ompletion of this modu	ıle the learner will be able to:					
#	Learning Outcome	Description					
LO1	Categorize different	ypes of simulation modelling technologies					
LO2	Implement and test a	st a conceptual model using a simulation tool					
LO3	Critically analyse out	tput data produced by a model and test the validity of the model					
LO4	Perform optimisation	according to chosen criteria					
LO5		I, apply and develop new (hybrid) methodologies of the most commonly used heuristics (Greedy, Simulated Annealing, Tabu Search, Evolutionary and Colony optimization)					
Dependencies							
Module Recommendations							
No recommendations listed							
Co-requisite Modules							
No Co-requisite modules listed							
Entry requirements		A level 8 degree or its equivalent in a cognate discipline					

H9MSO: Modelling, Simulation & Optimization

Module Content & Assessment

Indicative Content

Introduction

Concept of system, model and simulation, components of discrete event simulation

Simulation methodologies

Continuous, discrete, Monte Carlo, agent-based, system dynamics, games and virtual worlds

Statistical models

Statistical models in simulation, Probability distribution functions, Estimation of statistical parameters

Queueing system

Characteristic of a queueing system, Simulation of single server queueing system

Output data analysis for single system

Statistical analysis for terminating and non-terminating simulations, comparing alternative system configurations

Testina

Verification, validation and credibility of simulation models, simulation of manufacturing, material handling systems, traffic

Discrete optimisation techniques

Integer programming, Linear Programming, constraint programming

Multi-objective optimisation

Classical methods, advanced Methods, Pareto optimality

Metaheuristics

Fitness landscapes. Local search. Simulated annealing. Tabu search. Variable neighbourhood search

Evolutionary algorithms

Genetic algorithms. Swarm intelligence. Memetic algorithms swarm intelligence

Hybrid metaheuristics

Combining metaheuristics with mathematical programming, constraint programming, machine learning and data mining

Applications

Analytical customer relationship management, Clinical decision support systems, Direct marketing, Fraud detection

Assessment Breakdown	%		
Coursework	60.00%		
End of Module Assessment	40.00%		

Assessments

Full Time

Courseworl

 Assessment Type:
 Formative Assessment
 % of total:
 Non-Marked

 Assessment Date:
 n/a
 Outcome addressed:
 1,2,3,4,5

Non-Marked: Yes

Assessment Description:

Formative assessment will be provided on the in-class individual or group activities. Feedback will be provided in written or oral format, or on-line through Moodle. In addition, in class discussions will be undertaken as part of the practical approach to learning.

 Assessment Type:
 Project
 % of total:
 60

 Assessment Date:
 n/a
 Outcome addressed:
 2,3,4,5

Non-Marked: No

Assessment Description:

Long-form project which the student produces over the course of the entire semester. Student is required to model and simulate a process (production scheduling, planning, gaming, traffic, operating theatre) using a simulation tool using an open source simulation tool

 Assessment Type:
 Easter Examination
 % of total:
 40

 Assessment Date:
 n/a
 Outcome addressed:
 2,3,4,5

Non-Marked: No

Assessment Description:

Terminal assessment exam taken over 2 hours with four questions of which the student must answer three to address the students' understanding of the underlying theories and concepts

No End of Module Assessment

No Workplace Assessment

Reassessment Requirement

Repeat examination

Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

Reassessment Description

The repeat strategy for this module is an examination. All learning outcomes will be assessed in the repeat exam.

H9MSO: Modelling, Simulation & Optimization

Module Workload							
Module Target Workload Hours 0 Hours							
Workload: Full Time							
Workload Type	Workload Description	Hours	Frequency	Average Weekly Learner Workload			
Lecture	Classroom & Demonstrations (hours)	24	Every Week	24.00			
Tutorial	Other hours (Practical/Tutorial)	24	Every Week	24.00			
Independent Learning	Independent learning (hours)	202	Every Week	202.00			
Total Weekly Contact Hours							

Module Resources

Recommended Book Resources

Borshchev, A.. (2014), , The Big Book of Simulation Modeling: Multimethod Modeling with Anylogic 6, AnyLogic North America.

Choi, B.K. & Kang, D.. (2013), , Modeling and Simulation of Discrete Event Systems, Wiley Press.

Banks , J.. (2010), , Discrete-Event System Simulation, Pearson Education.

Simon, D.. (2013), Evolutionary Optimization Algorithms, Wiley.

Bertsekas, D. & Tsitsiklis, J.N.. (1997), , Introduction to Linear Optimization, Athena Scientific.

Mandal, J.K & Mukhopadhyay, S. & Dutta, P.. (2018), Multi-Objective Optimization: Evolutionary to Hybrid Framework, Springer Singapore.

Supplementary Book Resources

Kelton, W.D., Sadowski, R., and Zupick, N.. (2014), , Simulation with Arena, McGraw-Hill.

Evans, J.R. & Olson, D.L.. (2001), , Introduction to Simulation and Risk Analysis, Prentice Hall.

Zeigler, B.P., Praehofer, H. & Kim, T.G.. (2000), , Theory of Modeling and Simulation: Integrating Discrete Event, and Continuous Complex Dynamic Systems, Elsevier Academic Press.

This module does not have any article/paper resources

This module does not have any other resources

Discussion Note: